TABLE 1.X Results of the PCB Analysis in Air
WA#2-262 Cornell Dubilier Site
Results reported as (µg/m3)
Based on dry weight

1

Bldg 5 - Columbia Products -

CLIENT ID====>> SAMPLE LOCATION==>		060697-489 (00332) Columbia/ Back Storage Conc. MDL		060697-491 (00336) Columbia/ 300 Mid Bench Shelf	060697-492 (00338) Columbia/ Storage Bin
	Conc. MDL μg μg	μg/m3 μg/m3	Conc. MDL μg/m3 μg/m3	Conc. MDL µg/m3 µg/m3	Conc. MDL µg/m3 µg/m3
AROCLOR 1016	U 0.3	14 2.6	17 2.6	35 5.2	65 4.6
AROCLOR 1221 AROCLOR 1232 AROCLOR 1242	U 0.5 U 0.3 U 0.3	U 0.5 U 0.3 U 0.3	U 0.5 U 0.3 U 0.3	U 0.5 U 0.3	U 0.5 U 0.3
AROCLOR 1242 AROCLOR 1248 AROCLOR 1254	U 0.3 U 0.3	5 2.6 U 0.3	5 2.6 U. 0.3	U 0.3 13 5.2 U 0.3	U 0.3 25 4.6 U 0.3
AROCLOR 1260	U 0.3	U 0.3	U 0.3'	U 0.3	U 0.3

TABLE 1.X Results of the PCB Analysis in Soil-

WA#2-262 Cornell Dubilier Site

Results reported as (µg/kg)

Based on dry weight

Columbia Products Bldg. 5

Robalo Enterprises Bldg 5A

CLIENT ID=====>	060697-493 (00340)	060697-494 (00342)	060697-495 (00344)	060697-496 (00346)	060697-497 (003
SAMPLE LOCATION==>	Columbia/ Back Room	Columbia/ Pole 20 Back Room	Robalo/ Pole Near Breaker	Robalo/ Shelf In Side Bay Door	Truck Fencelin
	Conc. MDL	Conc. MDL	Conc. MDL	Conc. MDL	Conc.
	μg/m3 μg/m3	μg/m3 μg/m3	μg/m3 μg/m3	μg/m3 μg/m3	μg/m3
		2			
· `					· · · · · · · · · · · · · · · · · · ·
AROCLOR 1016	20 2.6	33 5.2	7.4 5.2	1.1 0.3	U
AROCLOR 1221	U 0.5	U 0.5	, U 0.5	U 0.5.	U
AROCLOR 1232	U 0.3	U 0.3	U 0.3	U 0.3	U
AROCLOR 1242	U 0.3	U 0.3	U 0.3	U 0.3	. U .
AROCLOR 1248	9 2.6	14 5.2	4.5 5.2	0.8 0.3	1.1
AROCLOR 1254	U 0.3	U 0.3	U 0.3	U 0.3	U
AROCLOR 1260	U 0.3	บ 0.3	Ú 0.3	U 0.3	. · U
Total RB	29	47	119	1.9	1 1

(00348) nceline MDL µg/m3

0.3 0.5 0.3 0.3 0.3 0.3

TABLE 1.X Results of the PCB Analysis in Soil A C WA#2-262 Cornell Dubilier Site Results reported as (µg/kg) Based on dry weight

Quit door

	Dublent	` `	-			S. 24	
CLIENT ID=====>	060697-498 (00350)		060697-499 (09554)		060697-500 (09556)		
SAMPLE LOCATION==>	Roadway Corn	er	Field I	Blank		Lot I	Blank
		IDL /m3	Conc. µg/m3	MDL μg/m3		Conc. µg/m3	MDL μg/m3
			. ,				١
AROCLOR 1016	U ().5	U	0.5		U	0,5
AROCLOR 1221	' 'U· .`().5	U	0.5	·	Ū.	0.5 .
AROCLOR 1232	U C).3	U	0.3		U	0.3
AROCLOR 1242	U).3	U	0.3	<i>'.</i>	U	0.3
AROCLOR 1248	U C).5	U	0.5	-	ี บั	0.5
AROCLOR 1254	U d).3	ָּט '	0.3	,	U	0.3
AROCLOR 1260	U C).3	U	0.3		. U	0.3

TABLE 1.X Results of the PCB Analysis in Soil

WA#2-262 Cornell Dubilier Site

Results reported as (mg/kg)

Based on dry weight

\ Vaevou

		Columbia - Bldg 5	Robalo Bldg 5 A	duplicate	HorpalBldg18
CLIENT ID=====>	SBLK06069701	060697-723 (09889)	060697-724 (09890)	060697-725 (09891)	060697-726 (09892)
SAMPLE LOCATION==>	<u>-</u>	Columbia Composite	Robalo Composite	Robalo Composite	Morpak Composite
	Conc. MDL	Conc. MDL	Conc. MDL	Conc. MDL	Conc. MDL
	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg
Ţ.		1 1 1 1 1 1 1 1 1 1			
AROCLOR 1016	U 0.008	U 0.083	U 0.042	U 0.083	U 0.042
AROCLOR 1221	U 0.017	U 0.167	U 0.083	U 0.167	U 0.083
AROCLOR 1232	U 0.008	U 0.083	U 0.042	U 0.083	U 0.042
AROCLOR 1242	U 0.008	U 0.083	u 0.042	U 0.083	U 0.042
AROCLOR 1248	U 0.008	6600 1700	43000 13000	33000 13000	7700 4200
AROCLOR 1254	U 0.008	21000 1700	190000 13000	120000 13000	32000 4200
AROCLOR 1260	U 0.008	U 0.083	Ù 0.042	U 0.083	U 0.042
MOCLON 1200	0.008	, 0 ; 0.083]	0.042	0.083	U 0.042

Total PCBs

27,600 ~3%

193,000

~ 19°10

39,100

~ 4°6

TABLE 1.X Results of the PCB Analysis in Soil

WA#2-262 Cornell Dubilier Site

Results reported as (mg/kg)

Concorte Samples from Floors Products - Bldg 5

CLIENT ID=====>	060697-727 (09894)	060697-728 (09895)	0606974729 (09896)	060697-730 (09897)	060697-731 (0
SAMPLE LOCATION==>	Chip 1 Top	Chip 1 Bottom	Chip 2 Top	Chip 2 Bottom	Chip 3 To
! !	Conc. MDL	Conc. MDL	Conc. MDL	Conc. MDL	Conc.
	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg -	mg/kg
		-			
AROCLOR 1016	U 0.042	U 0.042	U \ 0.083	U 0.042	U
AROCLOR 1221	U 0.083	U 0.083	U 0.167	U 0.083	U
AROCLOR 1232	U 0.042	U· 0.042 .	Û . 0.083	U 0.042	U .
AROCLOR 1242	U 0.042	U 0.042	U 0.083	U 0.042	\mathbf{U}
AROCLOR 1248	45000 21000	34000 21000	24000 42000	25000 42000	19000
AROCLOR 1254	170000 21000	130000 21000	86000 42000	80000 42000	63000
AROCLOR 1260	U 0.042	U 0.042	U 0.083	√U 0.042	U

Total

165,000

82,000

215,000 164,000 110,000 ~ 22% ~ 16% ~ 11%

11%

~8%

1 (09898)
Top
MDL
mg/kg

0.042
0.083
0.042
0.042
42000
42000
0.042

TABLE 1.X Results of the PCB Analysis in Soil

WA#2-262 Cornell Dubilier Site

Results reported as (mg/kg)

Samples from Floors
- Products Bldy 5A - Robalo

`		28		4		· · ·	1		, ,
CLIENT ID=====>	060697-73	2 (02343)	060697-73	33 (02344)	060697-7	734 (02345)	060697-73	5 (02346)	060697-736 (02
SAMPLE LOCATION==>	Chip 3 l	Bottom ·	Chip	4 Top	Chip 4	4 Bottom	Chip 5	Тор	Chip 5 Botto
	Conc.	MDL	- Conc.	MDL	Conc.	MDL	Conc.	MDL	Conc.
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	. mg/kg	mg/kg	mg/kg	mg/kg
,		, '		•	- 1				
	•							-	,
AROCLOR 1016	., U	0.042	. U	0.042	U	0.042	U	0.42	U
AROCLOR 1221	- U	0.083	. U	0.083	U	0.083	U	0.83	U '
AROCLOR 1232	U	0.042	U	0.042	U	0.042	' U	0.42	` U `
AROCLOR 1242	U :	0.042	· U ·	0.042	U T	0.042	U	0.42	U
AROCLOR 1248	14000	4200	54000	8300	34000	7 8300	470000	42000	190000
AROCLOR 1254	47000	4200	82000	.8300	48000	8300	740000	42000	280000
AROCLOR 1260	υ ·	0.042	U	0.042	ן ע	0.042	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.42	U

Total PCBs 61,000 136,000

470,000

2,000 | 1,219000 1,219000 2100°60 quantifation

6 (02347) ottom MDL mg/kg

> 0.17 0.33 0.17 0.17 17000 17000 0.17

TABLE 1.X Results of the PCB Analysis in Soil

WA#2-262 Cornell Dubilier Site

Results reported as (mg/kg)

Robab - Bldg 5A D Lorpek - Bldg 18

060697-738 (02349) Chip 6 Bottom Conc. MDL mg/kg mg/kg	060697-739 (02350) Chip 7 Top Conc. MDL mg/kg mg/kg	060697-740 (02351) Chip 7 Bottom Conc. MDL mg/kg mg/kg
Conc. MDL	Conc. MDL	Conc. MDL
	l,	
mg/kg mg/kg	mg/kg mg/kg	mg/kg mg/kg
· · · · · · · · · · · · · · · · · · ·		
U 0.083	U 0.042	U 0.42
U 0.167	U 0.083	U 0.83
U 0.083	U 0.042	U 0.42
U 0.083	U 0.042	U 0.42
100 17	29 6.1	96 42
200 17	116 6.1	220 42
U 0.083	U 0.042	U 0.42
	U 0.167 U 0.083 U 0.083 100 17 200 17	U 0.167 U 0.083 U 0.083 U 0.042 U 0.083 U 0.042 100 17 29 6.1 200 17 116 6.1

THE PLB

300,000

~ 30°6

TABLE 2.XX Results of the MS/MSD Analysis for PCB in PUFF WA# 2-262 Cornell Dubilier

·.		Sample	MS Spike	M S	M S	MSD Spike	M S D	MSD	
	Sample ID	Conc (ng)	Added (ng)	Conc (ng)	% Rec	Added (ng)	Conc (ng)	% Rec	RPD %
	500	U	1000	826	83	1000	804	80	. 3

TABLE 2.XX Results of the MS/MSD Analysis for PCB in Soil WA# 2-262 Cornell Dubilier Based on dry weight

 Sampl	e ID	Sample Conc (ug/kg)	MS Spike Added (ug/kg)	M S Conc (ug/kg)	M S % Rec	MSD Spike Added (ug/kg)	M S D Conc (ug/kg)	M S D % Rec	RPD %
 72	4	U	500	* \	* ,	500	*	*	*

^{* -} Concentrations could not be calculated due to high signals.

TABLE 2.XX Results of the Surrogate Recoveries WA#2-262 Cornell Dubilier

	Percent Recove	ry
Sample ID	TCMX	DCBP
		,
	,	
PBLK06069701	. 81′ "	126
500	91	132
500 MS	103	137
500 MSD	79	131
489	87	130
490	87	130
491	99	143
492	78	:114
493	94	134
494	87	126
495	. 84	119
496	88	120
497	104	137
498	103	144
499	109	152 *

		ADVISORY
<i>i</i>	1 3	QÇ
		Limits
Tetrachloro-m-xylene (TCMX)	•	60-150
Decachlorobiphenyl (DCBP)		60-150

TABLE 2.XX Results of the Surrogate Recoveries
WA#2-262 Cornell Dubilier

•	Percent Re	covery
Sample ID	TCMX	DCBP
· · · · · · · · · · · · · · · · · · ·		
SBLK06119701	109	109
724	*	. *,
724 MS	*	****
724 MSD	*	*
723	*	*
725	*	*
726	*	*
727	*-	*
728	*	*
729	*	*
730	*	*
730	•	
732		
733		· •
734		
735	•	•
736	*	*
737	*	*
738	*	*
739	*	*
740	`` *	*

		ADVISORY QC
		Limits
Tetrachloro-m-xylene (TCMX)		60-150
Decachlorobiphenyl (DCBP)	· . ''	60-150

^{* -} Surrogate diluted out.

ANALYTICAL REPORT

Prepared by Roy F. Weston, Inc.

Cornell Dubilier Electronics S. Plainfield, NJ

August 1997

EPA Work Assignment No. 2-262 WESTON Work Order No. 03347-142-001-2262-01 EPA Contract No. 68-C4-0022

> Submitted to S. Burchette **EPA-ERTC**

K. Robbins

Task Leader

REAC Kiber

Analysis by:

V. Kansal

Date

Analytical Section Leader

Prepared by: G. Karustis

E. Gilardi

Project Manager

Reviewed by: M. Barkley

Table of Contents

<u>.</u>			Dogo	Number.
Topi			_	14diliber
	duction		Page	1
	Narrative		Page	1
Sum	mary of Abbreviations		Page	3
Secti	on I			
			-	
.	Analytical Procedure for PCBs in Air		Page	4
	Analytical Procedure for PCBs in Dust		Page	6
· ;	Analytical Procedure for Lead and Cadmium in Air		Page	8
	Analytical Procedure for Lead and Cadmium in Dust		Page	9.
	Results of the Analysis for PCBs in Air	Table 1.1	Page	10
	Results of the Analysis for PCBs in Dust	Table 1.2	Page	11
1	Results of the Analysis for Lead and Cadmium in Air	Table 1.3	Page	13
ŀ	Results of the Analysis for Lead and Cadmium in Dust	Table 1.4	Page	14
				•
Secti	ion II			
				×
5	QA/QC for PCBs		Page	15
: . [Results of the Surrogate Recoveries for PCBs in Air	Table 2.1	Page	16
	Results of the MS/MSD Analysis for PCBs in Air	Table 2.2	Page	17
.]	Results of the Surrogate Recoveries for PCBs in Dust	Table 2.3	Page	-18
. 1	QA/QC for Lead and Cadmium in Air		Page	19
	Results of the QC Standard for Lead and Cadmium (Air)	Table 2.4	Page	20
. j.	Results of the Laboratory Control Standard for			
	Lead and Cadmium (Air)	Table 2.5	Page	21
* .P	Results of the Media Spike/Media Spike Duplicate Analysis			
	for Lead and Cadmium in Air	Table 2.6	Page	22
.	Results of the Reagent Spike Analysis for Lead and Cadmium	,		. —
[,	in Air	Table 2.7	Page	23
	QA/QC for Lead and Cadmium in Dust	14010 2.7	Page	24
- 1	Results of the Analysis of the Laboratory Control Standard for			2.
1 1	Lead and Cadmium in Dust	Table 2.8	Page	25
i i	Results of the Duplicate Analysis for Lead and Cadmium	Table 2.5	rage	23
	in Dust	Table 2.9	Page	26
	Results of the Matrix Spike Analysis for Lead and Cadmium	Table 2.9	rage	, 20
. 1.	in Dust	Table 2.10	Doge	27
ļ	in Dust	Table 2.10	Page	
Sacri	ion III			
Secu	IOII III	•		• • •
	Communications		Dogo	′ 20
		the state of the s	Page	28
ļ	Chains of Custody		Page	29
	and in A. Dave for Lord and Codminum in Air		D	C 250 01
• •	endix A Data for Lead and Cadmium in Air		Page	G 250 01
	endix B Data for Lead and Cadmium in Dust		Page	G 290 01
	endix C Data for PCBs in Air		Page	G 318 01
App	endix C Data for PCBs in Dust		Page	G 441 01
5				

Appendices will be furnished on request.

Introduction

REAC, in response to ERTC WA # 2-262, provided analytical support for environmental samples collected at the Cornell Dubilier Electronics Site in S. Plainfield, NJ as described in the following table. The support also included QA/QC, data review and the preparation of a report summarizing the analytical methods, results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP #1008 and are summarized in the following table:

COC #**	Number of Samples	Sampling Date	Date Received	Matrix	Analysis	Laboratory
03968	4	6/9/97	6/13/97	Vacuum Dust	Pb, Cd	Kiber
03968	14	6/9/97	6/13/97	Concrete Dust	Pb, Cd	Kiber
08342	12	6/5/97	6/6/97	Air	Рь, CD	REAC
08343	12	6/5/97	6/6/97	Air	PCB	REAC
08400	4	6/9/97	6/11/97	Vacuum Dust	PCB	REAC
08400	14	6/9/97	6/11/97	Chip Dust	РСВ	REAC

COC # denotes Chain of Custody number

Case Narrative

Lead and Cadmium in Air Package G 250

The data were examined and were found to be acceptable.

PCB in Air Package G 318

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for tetrachloro-m-xylene, decachlorobiphenyl and peaks one and two of Aroclor 1248. The data are not affected.

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for all five peaks of Aroclor 1248. The data are not affected

The percent recoveries of the surrogate decachlorobiphenyl exceeded the acceptable QC limits for sample 499 (Field Blank). The data are not affected.

\2262\DEL\AR\9708\REPORT

PCB in Dust Package G 441

Because the analyses were run more than 50 days beyond the extraction date, values should be regarded as estimated. Original samples were re-extracted. There is no significant difference in the results.

The continuing calibration check standard CRD3A21A.D exceeded the acceptable QC limit for decachlorobiphenyl (35%). The data are not affected.

The continuing calibration check standard CRD3A01A.D exceeded the acceptable QC limit for decachlorobiphenyl (29%). The data are not affected.

The continuing calibration check standard CRD3A24A.D exceeded the acceptable QC limit for decachlorobiphenyl (34%). The data are not affected.

The end of sequence calibration check CRD3A28A.D exceeded the acceptable QC limits for five peaks of Aroclor 1254. The data are not affected.

Because of the presence of Aroclor 1248 and Aroclor 1254 at ppm concentrations, the samples required high dilutions and the surrogates were not recovered. The data are not affected.

Lead and Cadmium in DustPackage G 290

The data were examined and were found to be acceptable.

Summary of Abbreviations

AA	Atomic Absorption
В	The analyte was found in the blank
BFB	Bromofluorobenzene
BPQL	Below the Practical Quantitation Limit
C	Centigrade
Ď	(Surrogate Table) this value is from a diluted sample and was not calculated
	(Result Table) this result was obtained from a diluted sample
Dioxin	denotes Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans and/or
DIOXIII	PCDD and PCDF
CLP	Contract Laboratory Protocol
COC	Chain of Custody
the state of the s	Concentration
CONC	
CRDL	Contract Required Detection Limit
CRQL	Contract Required Quantitation Limit
DFTPP	Decafluorotriphenylphosphine
DL	Detection Limit
E	The value is greater than the highest linear standard and is estimated
EMPC	Estimated maximum possible concentration
ICAP	Inductively Coupled Argon Plasma
ISTD	Internal Standard
, J	The value is below the method detection limit and is estimated
LĊS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MDL	Method Detection Limit
MQL	Method Quantitation Limit
MI	Matrix Interference
MS	Matrix Spike
MSD	Matrix Spike Duplicate
MW	Molecular Weight
NA	either Not Applicable or Not Available
NC	Not Calculated
NR	Not Requested
NS	Not Spiked
% D	Percent Difference
% REC	Percent Recovery
PQL	Practical Quantitation Limit
PPBV	Parts per billion by volume
QL	Quantitation Limit
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
SIM	Selected Ion Mode
TCLP	Toxic Characteristics Leaching Procedure
U	Denotes not detected
m ³	
L	
•	liter g gram pg picogram
mL	milliliter mg milligram
uL *	microliter
. ``	denotes a value that exceeds the acceptable QC limit

table Revision 3/7/97

Abbreviations that are specific to a particular table are explained in footnotes on that

Analytical Procedure for PCBs in Air

Extraction Procedure

The entire wipe was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, and was sonicated with hexane. The combined extracts were concentrated to 3.0 mL.

Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-ChemStation. The following conditions were employed:

First Column DB-608, 30 meter, 0.53mm fused silica

capillary, 0.83 µm film thickness

Injector Temperature 250° C Detector Temperature 325° C

Temperature Program 150°C for 1 minute

7°C/min to 265°C 18 min at 265°

Second Column Rtx-1701, 30 meter, 0.53mm fused silica

capillary, 0.50 µm film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150° C for 1 minute

7°C/min to 265°C 18 min at 265°

The gas chromatographs were calibrated using 5 Aroclor 1254 standards at 250, 500, 1000, 2000, and 5000 $\mu g/L$. The response from each mixture were used to calculate the response factors (RF) of each analyte. The average RF was used to calculate the concentrations of PCB in the samples. Quantification was based on the DB-608 column (signal 1), and identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint gas chromatogram was run using each of the seven Aroclor mixtures.

The PCB results, listed in Table 1.1, were calculated from the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_i}$$

where

= Concentration of analyte ($\mu g/100 \text{ cm}^2$)

DF = Dilution Factor
A_u = Area or peak height
V_i = Volume of sample (mL)
RF_{ave} = Average response factor
V_i = Volume of extract injected (μL)

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where

A_u = Area or peak height

and

$$RF_{ave} = \frac{RF_1 + ... + RF_n}{n}$$

where

n = number of samples

Revision 7/11/94

Analytical Procedure for PCBs in Dust

Extraction Procedure

The dust samples were extracted by the Soxhlet method. Thirty grams of sample was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, 30 g anhydrous sodium sulfate and Soxhlet extracted for 16 hours with 300 mL 1:1 hexane: acetone. The extract was concentrated to 5.0 mL.

Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-CHEM STATION. The following conditions were employed:

First Column DB-608, 30 meter, 0.53mm fused silica

capillary, 0.83 µm film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150°C for 1 minute

7°C/min to 265°C 18 min at 265°

Second Column Rtx-1701, 30 meter, 0.53mm fused silica

capillary, 0.50 µm film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150° C for 1 minute

17°C/min to 265°C 18 min at 265°

The gas chromatographs were calibrated using 5 PCB standards at 250, 500, 1000, 2000 and 5000 μ g/L. The results from each mixture were used to calculate the response factor (RF) of each analyte and the average Response Factor was used to calculate the concentration of PCB in the sample. Quantification was based on the DB-608 column (signal 1) and the identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint chromatogram was run using each of the seven Aroclor mixtures; calibration curves were run only if a particular Aroclor was found in the sample

The PCB results, listed in Table 1.2, are calculated by using the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_ixWxD}$$

where

 C_u = Concentration of analyte (mg/Kg)

DF = Dilution Factor
A_u = Area or peak height
V_t = Volume of sample (mL)
RF_{ave} = Average response factor
V_t = Volume of extract injected (μL)

W = Weight of sample (g)
D = Decimal percent solids

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where.

A_u = Area or peak height

and

$$RF_{ave} = \frac{RF_1 + ... + RF_n}{n}$$

where

n = number of samples

Revision 7/11/94

Sample Preparation

Each wipe sample was transferred to a clean 100 mL beaker and prepared according to reference method NIOSH 7105. The samples were thoroughly mixed with 5 mL concentrated nitric acid and heated on a hot plate until the volume was reduced to 0.5 mL. Additional nitric acid and hydrogen peroxided were added during heating to complete digestion of the wipe pad. After digestion, the samples were allowed to cool to room temperature, transferred to 25 mL volumetric flasks and diluted to 25 mL with ASTM Type II water. The samples were analyzed for all lead and cadmium, by USEPA SW-846, Method 7000 (Atomic absorption) or Method 6010 (Inductively Coupled Argon Plasma-ICAP) procedures.

A reagent blank, reagent blank spike, media blank and media blank spike were carried through the sample preparation procedure for each analytical batch of samples processed. One matrix spike (MS) and one matrix spike duplicate (MSD) sample (prepared using blank wipes) were also processed for each analytical batch or every 10 samples.

Analysis and Calculations

The instruments were calibrated and operated according to SW-846, Method 7000/6010 and the manufacturers operating instructions. After calibration, initial calibration verification (ICV), initial calibration blank (ICB) and quality control check standards were run to verify proper calibration. The continuing calibration verification (CCV) and continuing calibration blank (CCB) were run after every ten samples to assure proper operation during sample analysis.

The metal concentrations in solution, in micrograms per liter ($\mu g/L$) were taken from the read-out systems of the AA and ICAP instuments. The results (in micrograms per wipe, $\mu g/wipe$) were obtained by externally correcting read-outs for final digestion volume.

Final concentrations, $(\mu g/\text{wipe})$ were given by:

 μ g metal/wipe sample = Ax(V/1000)xDF

where:

A = Insrument read-out $(\mu g/L)$

V = final volume of processed sample (mL)

DF = Dilution Factor (1.00 for no dilution)

For samples that required dilution to be within the instrument calibration range, DF is given by:

DF = (C+B)/C

where:

B = acid blank matrix used for dilution (mL)

C = sample blank aliquot (mL)

The results of the analysis are listed in Table 1.3.

\2262\DEL\AR\9708\REPORT

Analytical Procedure for Lead and Cadmium in Dust

The subcontract laboratory determined the lead and cadmium concentrations in the samples by preparing them according to USEPA Method 3050 and analyzing them according to USEPA Method 6010. Both procedures are found in SW-846. The results of the analysis are listed in Table 1.4.

\2262\DEL\AR\9708\REPORT

Table 1.1 Results of the Analysis for PCBs in Air WA # 2-262 Cornell Dubilier Electronics

Volume (L)		-	/ Back	mbia Storage 60	Mid Wo	ia/ Shelf ork Area 50	Mid Ber	bia/ 300 nch Shelf 60	Stora	umbia Ige Bin 080
	Conc.	MDL µg	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3
AROCLOR 1016	Ü	0.3	7.	2.6	12	2.6	18	5.2	33	4.6
AROCLOR 1221	U	0.5	U	0.5	υ·	0.5	U	0.5	U	0.5
AROCLOR 1232	U	0.3	U	0.3	U	0.3	U	0.3	Ų	0.3
AROCLOR 1242	U	0.3	U ,	0.3	U	.0.3	U	0.3	U	0.3
AROCLOR 1248	U	0.3	2	2.6	5	2.6	6	5.2	12	4.6
AROCLOR 1254	U	0.3	U	0.3	./ U	0.3	U 👾	0.3	U	0.3
AROCLOR 1260	U	0.3	· U	0.3	U	0.3	U	0.3	Ū	0.3

Sample ID Location Volume (L)		Back	340 mbia/ Room 50	Columb 20 Bac	342 via/ Pole k Room 50	Robal Near E	344 o/ Pole Breaker 50	Robald In Side	346 o/ Shelf Bay Door 60		348 enceline 60
	•	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3
AROCLOR		10	2.6	16	5.2	3.7	5.2	0.6	0.3	Ü	0.3
AROCLOR	1221	U	0.5	U	0.5	U	0.5	U	0.5	· U	0.5
AROCLOR	1232	U	0.3	Ú	0.3	U	0.3	.U	0.3	. U	0.3
AROCLOR	1242	U	0.3	U,	0.3	Ü.	0.3	U	0.3	Ū.	0.3
AROCLOR	1248	5	2.6	7	5.2	2.3	5.2	0.4	• 0.3	0.2	J 0.3
AROCLOR	1254	∵ U	. 0.3	U	0.3	Ü	0.3	Ü	0.3	, U	0.3
AROCLOR	1260	U	0.3	U	0.3	Ū.	0.3	Ū	0.3	ŭ	0.3

Sample ID Location Volume (L)		350 y Corner 50		554 Blank -	09556 Lot Blank		
	Conc. µg/m3	MDL µg/m3	Conc.	MDL ng	Conc. ng	MDL ng	
AROCLOR 1016	Ü	0.3.	U	250	U	250	
AROCLOR 1221	Ü	0.5	U	500	U	500	
AROCLOR 1232	. U	0.3	Ù U	250	U	250	
AROCLOR 1242	U	0.3	U	250	,U	250.	
AROCLOR 1248	U	0.5	, U -	- 250	- U	250	
AROCLOR 1254	0.2	0.3	, U	250	U .	250	
AROCLOR 1260	U	0.3	U	250	U	250	

2262\DEL\AR\9708\ALL

Table 1.2 Results of the Analysis for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

Client ID Location Percent Solid	SBLK06119701 100		09889 A Columbia Composite 100		Robalo	09890 A Robalo Composite 100		09891 A Robalo Composite 100		09892 A Norpak Composite 100	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	
Aroclor 1016	U	0.04	. U	830 ′	. U `	1300	Ü	130	U	4.2	
Aroclor 1221	Ų	0.08	U	1700	Ū	2500	Ü	270	Ũ	8.3	
Aroclor 1232	U.	0.04	, U	830	\- U ·	1300	U	130 /	U	4.2	
Arocior 1242	U	0.04	U	830	Ù	1300	ΰ	130	U,	4.2	
Arocior 1248	U	0.04	4500	830	5200	1300	360	130	16	4.2	
Aroclor 1254	U	0.04	15000	830	16000	1300	2500	130	81	4.2	
Aroclor 1260	. U :	0.04	U	830	U	1300	U	130	Ū	4.2	

Client ID Location Percent Solid	09894 A Chip 1 Top olid 100		09895 A Chip 1 Bottom 100		09896 A Chip 2 Top 100			9897 A 2 Bottom 100	09898 A Chip 3 Top 100	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc.	MDL mg/kg
Aroclor 1016	Ü	4200	U	4200	U	83	U	4.2	ט	83
Aroclor 1221	U	8300	U	8300	Ū	170	U	8.3	Ü	170
Aroclor 1232	U,	4200	U	4200	U	83	U	4.2	Ù.	83
Aroclor 1242	υ	4200	Ú	4200	U	83	U	4.2	Ū	83
Aroclor 1248	21000	4200	19000	4200	190 (83	42	4.2	400	83
Arocior 1254	57000	4200	41000	4200	590	83	. 81	4.2	870	83
Arocior 1260	U	4200	U	4200	u ·	83	U	4.2	Ü	83

Table 1.2 (Cont) Results of the Analysis for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

Client ID Location Percent Solid	02343 A Chip 3 Bottom 100		02344 A Chip 4 Top 100		Chip	345 A 4 Bottom 100		2346 A ip 5 Top 100	02347 A Chip 5 Bottom 100	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg
Aroclor 1016	U	83	U	1700	U	2100	U:	42	U	17
Aroclor 1221	U	1.70	√ U	3300	U 🦨	4200	U	83	. U	33
Aroclor 1232	U	83	Ü	1700	ຸ່ປ	2100	· U	42	U	17
Arocior 1242	U -	83	i u, .	1700	U	2100	U	42 : 1	U	17
Arocior 1248	320	83	28000	1700	31000	2100	- 150	. 42	94	17
Arocior 1254	530	. 83	17000 ·	1700	15000	2100	200	42	100	17.
Aroclor 1260	U	83	Ų	1700	. u	2100	Ü	42	U	1.7

Client ID Location Percent Solid	ocation Chip 6 Top		Chip (349 A 6 Bottom 100	Chip	350 B 5 7 Top 100	02351 A Chip 7 Bottom 100		
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	
Aroclor 1016	U	170	U	83	U	6.1	. U.	17	
Aroclor 1221	U	330	U	170	. U	12 -	U	33	
Aroclor 1232 -	U	- 170	U	83	U -	6.1	Ĺ	17	
Aroclor 1242	U .	170	U	83	· U	6.1	U	17	
Aroclor 1248	1800	170	540	83	23	6.1	48	. 17	
Aroclor 1254	1000	170	250	83	73	6.1	58	17	
Aroclor 1260	U	170	` U	83	U	6.1	Ù	17	

Table 1.3 Results of the Analysis for Lead and Cadmium in Air WA # 2-262 Cornell Dubiller Electronics

Paramete Analysis		Volume		mium urnace	,, = ==:	mium Irnace	Le AA-fu	ad mace	Le AA-fu	ad mace
Client ID	Location	., (L) (,	Conc µg/m³	DL µg/m³	Conc µg/filter	DL µg/filter	Conc µg/m³	DL µg/m³	Conc µg/filter	DL µg/filter
00331	Columbia/Back Storage	960	0.054	0.0052			0.074	0.050		
00333	Columbia/Back Storage Columbia/Shelf Mid Work area	960	0.037	0.0052	•	•	0.971	0.052	-	•
)))))	Columbia/3cd Mid Bench Shelf				-	•	0.578	0.052	•	• •
	==:=:::::===::::===::::==::::=::::=:::::	960	0.021	0.0052		•	0.117	0.052	•	. •
0337	Columbia/Storage Bin by Break Room	960	0.011	0.0052	• * •	•	0.115	0.052	•	•
00339	Columbia/Back Room Work Bench	960	0.013	0.0052	•	•	0.354	0.052	•	•
00341	Columbia/Pole 20 Back Room	960	0.008	0.0052	•	• .	0.253	0.052	- `	, .
00343	Robalo/Pole Near Breaker	960	0.017	0.0052	- '	-	0.417	0.052	-	-
00345	Robalo/Shelf Inside Bay Door	960	0.007	0.0052			0.185	0.052	·	
00347	Truck Fenciine	912	0.005	0.0055	(, -		0.134	0.055	_ 4	_
00349	Roadway Corner	960	0.002	0.0052		_	0.083	0.052		_
9553	Field Blank		-		11	0.005			0.100	0.050
09555	Lot Blank	•		. •	Ü	0.005	· .	•	0.073	0.050

Table 1.4 Results of the Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

Parameter:		% Solids			Cadmium	
Client ID	Location	•	Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg
B 09889 \	Columbia Composite	97	3800	37	130	5.4
B 09890	Robalo Composite	96	2600	32	120	24
B 09891	Robalo Composite	97	1500	6.3	24	4.6
B 09892	Norpak Composite	98	1700	6.8	44	5.0
B 09894	Chip 1 - Top	96	1000	5.6	. U	4.1
B 09895	Chip 1 - Bottom	96	68	6.4	U	4.6
B 09896	Chip 2,= Top	99	360	√5.8	٠٠٠U	4.2
B 09897	Chip 2 - Bottom	98	48	5.3	- U /	3.9
B 09898	Chip 3 - Top	-97	71	4.7	U	3.5
⁶ B 02343	Chip 3 - Bottom	98	33	6.9	U	5.1
B 02344	Chip 4 - Top	95 (100	7.4	9.4	5.4
B 02345	Chip 4 - Bottom	96	22	5.4	· U	3.9
B 02346	Chip 5 - Top	97	39	5.9	Ü	4.3
B 02347	Chip 5 - Bottom	95	24	8.1	U	5.9
B 02348	Chip 6 - Top	. 99	190	4.4	Ū	3.2
B 02349	Chip 6 - Bottom	98	16.	4.6	Ů	3.4
B 02350	Chip 7 - Top	. 97	100	7.4	Ũ	5.4
B 02351	Chip 7 - Bottom	97	40	6.0	Ū	4.4
Method Blank		NA	Ü	7.1	ŭ	5.2

QA/QC for PCBs

Each air sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries ranged from 78 to 152 and are listed in Table 2.1. Twenty-nine out of thirty values were within the advisory QC limits.

Sample 500 was chosen for the matrix spike/matrix spike duplicate (MS/MSD) analyses for the air samples. The percent recoveries were 80 and 83 and are listed in Table 2.2. The relative percent difference (RPD), also listed in Table 2.2, was 3. QC limits are not available for this analysis.

Each dust sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries, listed in Table 2.3, ranged from 100 to 117. Both reported values were within the acceptable QC limits. Thirty-six other values were from diluted samples and the percent recovery could not be calculated.

Table 2.1 Results of the Surrogate Recoveries for PCBs in Air
WA # 2-262 Cornell Dubilier Electronics

	Percent R	Recovery	
Sample ID	TCMX	DCBP	
PBLK06069701	. 81	126	
500 °	. 91	132	*
500 MS	103	137	-
500 MSD	79	131	
489	87	130	•
490	87	130	
491	99	143	*
492	78	114	
493	94	134	· .
494	87	126	
495	84	119	· · · · ·
,496	88	120	
497	104	137	
, 498 ,	103	144	
499	109	152 *	

TCMX denotes Tetrachloro-m-xylene DCBP denotes Decachlorobiphenyl

`- '			 	Advisory QC
		, .		Limits
TCMX	(-	•		60-150
DCBP)		•	60-150

2262\DEL\AR\9708\ALL

Table 2.2 Results of the MS/MSD Analysis for PCB in Air WA # 2-262 Cornell Dubilier Electronics based on dry weight

Sample ID	Sample Conc (ng)	MS Spike Added (ng)	MS Conc (ng)	MS % Rec	MSD Spike Added (ng)	MSD Conc (ng)	MSD % Rec	RPD %
500	, U	1000	826	83	1000	804	80	3

Table 2:3 Results of the Surrogate Recoveries for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics

	Percent Recovery		
ͺͺ Sample ID	TCMX	DCBP	
SBLK06119701	100 ,	117	-
09889 A	D	. D	
09890 A	D	D	
09891 A	D	D	
09892 A	D	D	
09894 A	D	D	
09895 A	D	D	
09896 A	D	D	
09897 A	D ·	D	
09898 A	D	D	
02343 A	D	D	
02344 A	D	D	
02345 A	D	D	
02346 A	D .	Ď	, -
02347 A	D ·	D	
02348 A	D '	., · D	٠.
02349 A	. D	D	
02350 B	D	, D	-
02351 A	· Ď	· D	

TCMX denotes Tetrachioro-m-xylene DCBP denotes Decachiorobiphenyl

	Advisory
	QC
· •	Limits
TCMX	60-150
DCBP	60-150

QA/QC for Lead and Cadmium in Air

QC standards TMMA #1 were used to check the accuracy of the calibration curve. The percent recoveries ranged from 92 to 101 and all recovered concentrations were within the 95% confidence limits. The recoveries are listed in Table 2.4.

A NIST standard was also analyzed. The percent recoveries, listed in Table 2.5, were 95 and 100. The 95 % confidence limits are not available for this analysis.

The percent recoveries of the media spike/media spike duplicate (MS/MSD) analyses, listed in Table 2.6, ranged from 87 to 98. The relative percent differences (RPDs), also listed in Table 2.6, were 2 and 12. All four percent recoveries and both RPDs were within the recommended QC limits.

The percent recoveries of the reagent spike, listed in Table 2.7, were 96 and 103. Both percent recoveries were within the recommended QC limits.

\2262\DEL\AR\9708\REPORT

Table 2.4 Results of the QC Standard Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Date Analyzed	Quality Control Standard	Conc. Rec µg/L	True Value µg/L	95 % Confidence Interval	% Rec
٠						
Cadmium	06/11/97	TMAA#1	4.62	5.00	4.10 - 5.83	92
Lead	06/10/97	TMAA#1	50.6	50.0	43.4 - 56.3	101

Table 2.5 Results of the Laboratory Control Standard Analysis for Lead and Cadmium (Air WA # 2-262 Cornell Dubilier Electronics

Metai	Date Analyzed	Quality Control	Conc. Rec	True Value	95 % Confidence	% Rec	
		Standard	µg/Filter	µg/Filter	interval	,	
	• • •					• •	
Cadmium	06/11/97	NIST Std	0.918	0.97	NA .	95	
Lead	06/10/97	NIST Std	7.45	7.44	NA .	100	

Table 2.6 Results of the Media Spike/Media Spike Duplicate (MS/MSD) Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Sample	Spiked	Conc.	Recover	ed Conc.	% Re	covery	RPD	Recomm	nended
	Conc. µg/filter	Spike µg/filter	Dup. µg/filter	Spike µg/filter	Dup. µg/filter	Spike ug/filter	Dup. ug/filter		Lim % Rec (Advison	RPD
		· .	•						٦.	
Cadmium	0.003	1.00	1.00	0:960	0.980	96	98	2	75-125	20
Lead	0.073	1.00	1.00	1.045	0.938	97	. 87 -	12	75-125	20

Table 2.7 Results of the Reagent Blank Spike Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Reagent Spiked Conc	Blank Conc	Reagent Rec Conc	% Rec	Recommended Limit
	µg/L	ug/L	ug/L	· ·	(Advisory Only)
Cadmium	40	0.04	38.3	96	75-125
Lead	40	0.2	41.5	103	75-125

QA/QC for Lead and Cadmium in Dust

The percent recoveries of the laboratory control standard, listed in Table 2.8, were 92 and 96. Both percent recoveries were within the recommended QC limits.

Sample B 09889 was chosen for the duplicate analysis. The relative percent differences, listed in Table 2.9. were 1 and 14 and both results were within the acceptable QC limits.

The percent recovery of the matrix spike (MS) analysis, listed in Table 2.10, ranged was 92. One other percent recovery was not calculated because of matrix interference. The calculated percent recovery was within the acceptable QC limits.

Table 2.8 Results of the Analysis of the Laboratory Control Standard for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

	Metal	Spiked Conc mg/kg	Rec Conc mg/kg	% Rec	Recommended Limit
١.	Cadmium	50	46	92	80-120
	Lead	50	48	96	80-120

2262\DEL\AR\9708\ORIG

Table 2.9 Results of the Duplicate Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

Metal	Sample ID		Duplicate Analysis mg/kg	RPD	QC Limit
Cadmium	B 09889	133.92	153.36	14	. 20
Lead	B 09889	3765.97	3735.30	1	20

Table 2.10 Results of the Matrix Spike Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

Metai	Sample ID	Sample Conc mg/kg	Spike Conc mg/kg	Rec Conc mg/kg	% Rec	QC Limits
Cadmium	B 09889	133.92	7.24	.107	NC '	80-120
Lead	B 09889	3765:97	98.82	3857.02	92	80-120

Roy F. Weston, Inc. GSA Raritan Depot Building 209 Annex (Bey F) 2890 Woodbridge Avenue Edison, New Jersey 08837-3679 908-321-4200 • Fax 908-494-402

Kiber Environmental Services 3786 Dekalb Technology Parkway, N.E. Atlanta, GA 30340

Attn: Denise Ward

12 June 1844

Project # 3347-142-001-2262 Cornell Dubilier

As per Weston REAC Purchase Order number 81306, please analyze samples according to the following parameters:

Analysis/Method	Matrix	# of samples
Pb & Cd/ SW-846-6010 or Series 7000	Concrete Chips	18
Data package: see attached Deliverables Requirements	Consider Cimps	1 10

Samples are expected to arrive at your laboratory on June 13,1997. All applicable QA/QC analysis as per method, will be performed on our sample matrix. Preliminary sample result tables plus a signed copy of our Chain of Custody must be faxed to REAC 7 business days after receipt of the samples. The complete data package is due 21 business days after receipt of the samples. The complete data package must include all items on the deliverables checklist.

Please submit all reports and technical questions concerning this project to John Johnson at (908) 321-4248 or fax to (908) 494-4020. Any contractual question, please call Cynthia Davison at (908) 321-4296. Thank you

Sincerely,

Misty Barbley BONY

Data Validation and Report Writing Group Leader

Roy F. Weston, Inc. / REAC Project

MB:jj Attachments

cc. R. Singhvi

S. Burchette

2262\non\mem\9706\sub\2262Con1

V. Kansal

Subcontracting File

Y. Exume

C. Davison

K. Robbins

M. Barkley

REAC, Jon, NJ (908) 321-4200 EPA Contract 68-C4-0022 CHI DE CUSTODY RECORD

Project Name: 140-001-2262-01 J3347-Project Number:

Phone: 321-4200

08342 No:

SHEET NO. OF

560657		Sample Ide	entifica	ation				Analy	ses Reque	sted	,
REAC#	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/P	reservative	Pb Cd	Volume (1)		`. /
501		Circabil Post Emas	id	6/5/97	1	CASSFILE	/ WHELPH		960		
302	00533	la colora Sure Aria	4	6/5/77	1				960		· /
503	00335	CL. MOVI/3704 SWEET	A	6/5/97	. (/	960		
104	00337	(ULUMBA) BY BYEAK/ROOM	,A	6/5/97	\			V	960		
505	∞ 339	CCL-mB14 WILL BORE	A	6541	()		· ·	<u> </u>	960		
506	00341	CHABIA BACKACOM	A	6/5/97	.(:		· V	960	- VY/	
507		ROBALO PREAMER	A	6/577	1	<u> </u>		<u> </u>	960	L V	/_/
508	00345	ROCALD BAN FROM	Α.	6/5/97	-1	. ,		~	960	N	
100		TRUCK FENCUENE	A	6/5/77	1				912		
510	00349	RUADIUAN COMNER	Α	6/5/97			,	V-	960		
5//	09553	FIELD BLANK	A	6/5/97	. 1			<i>V</i>	<u> </u>		
512	09555	LOT/MS/MSO	. A	6/5/97	3	<u> </u>	/		0	/	
					· · · · · · · · · · · · · · · · · · ·						
\ <u>`</u>						1					
	` `			•							
						X					
	·					1					
•						1 /					
Metriu			<u> </u>	<u> </u>	al instructions				1		

RFW Contact K. Pussins

Matrix: SD -DS -

Sediment **Drum Solids**

Drum Liquids

GW -SW -

SL >

Potable Water

Surface Water

Sludge

Groundwater

Soil .

Water Oil

ms/msid-madia SAKE/MEDIA SPIKE PURLCATE

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF **CUSTODY**#

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
ALL/ANAIUSS	the sell	6/6 A7	YEXUME	6/491	10:30	ALLANALYSIS	Y. EKUME	4497	Married alualy	6/6/47	M30
									,		
					•						

FORM #4

REAC, son, NJ (908) 321-4200 EPA Contract 68-C4-0022

CHA OF CUSTODY RECORD

Project Name: CORNELL PUBILIER Project Number: 03347-142-001-2262-01 RFW Contact: 1 Possins Phone: 321-4200

08343 No:

SHEET NO. OF_

C60647 Sample Identification **Analyses Requested** VOLUME (L) **Date Collected** PCBS REAC,# Sample No. Sampling Location Matrix # of Bottles Container/Preservative CU33? (Windy Bring) WHIPLANC! NOWS 960 CILL MANA SASLEMO 437 CO334 960 CC336 (IL MBW/DWY SHOWS OCC338 (IL MBW/DWY SHOWS OCC338 (IL MBW/DWY SHOWS OCC340 OCC340 (IL MBW/DWW) OCC340 (IL MBW/DWW) 960 _ 1080 960 00342 COUNTS A BUE TON 00344 ROAW PREMIER 960 960 00346 Remo/SHELF NE 960 491-00348 TACK FENCELINE 960 497 COBED POROVAN CORNER 960 495 09554 Figus BLANK 444 0 09556 W/ms/ms/ 500 0

Matrix: SD -DL - .

Sediment **Drum Liquids**

Drum Solids

PW -GW -SW -

Potable Water

Sludge

Groundwater Surface Water

Water Oil

Soil

(L),-LITTERS MS/MSD - MEDIA SAKE

Special Instructions:

MEDIA SPEKE PUPLICATE

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF **CUSTODY#**

Ite	ms/	Reason	Relino	uished B	y ,	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
AL	il,	ANACYSIS	the	15	-	6/6/97	Y. ExyME	6/6/97	10:30	ACC WALLA ? !	Y Exume	6/497	H. Nohan	6/7	2.30
	7				**	, /								21.1	
							•								
	1.	,													·
							•					1			

REAC, ...son, NJ (908) 321-4200 EPA Contract 68-C4-0022 Project Name CORNELL DUBILIER

Project Number 03347-142-001-2262-01

No

03968

RFW Contact: Ken Robbins Phone 908 321-4298

SHEET NO. TOF

·- ,	-2552	Sample Ide	entific	ation				yses Reque	sted
REAC #	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative	P6	Cd	
		JUNIDIA COMPUTE	X-1	6/9/97		8-03 Poly/ICE	V	V	1
		Robalo Composite				101	/	V	
	30989	Robalo Compait					V	/	
4	B09892	Worpak Compair				V /			
5		Chibl- Top	X-2			4-07 Glass/Ice			
		Chip - Bottom	1			, , , , , , , , , , , , , , , , , , ,	<u> </u>		11:31
	809896			0.5			V		
		Chib2 Bottom							
	B09 89 8						/		X
		chib3-Bottom					/	 	/ / /
	B02344						-		$+\Omega/+$
_		chiba Bottom							1/8/
		chip5-Top							
		chips-Bottom						 	+7-+
	B02348							+ /_	 /
		chipf-bottem	 			02 42 6/25		+//	
		hip7-Tob			 	B2-02 Glos Ice	V		V
181	106251	chib7- Bottom	<u> Y</u>	MT	4	- W		 	
4				(E)				MI	
lx:			L	Speci	al Instructions:				
Sed		PW - Potable Water	S-	Soil				· · · · · · · · · · · · · · · · · · ·	
		GW - Groundwater SW - Surface Water	W-	Water Oil			FOR	SUBCONTR	ACTING USE ON
, Oth	er S	SL - Sludge	Ă-	Air		~			-
Vac	evum Du ncretechi	s†	_	···	\int		FROI	M CHAIN OF	0 100
		1 - 1				7 6.0°C	I CUS	TODY # 0	X ZL(X)

	Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
	ALVAnalus	Wires beacing	6/12/1	Dubra	13/97	0930						
	-7901		بمبلينا	14								i
		100									S	
					1.	100				· · · · · · · · · · · · · · · · · · ·		
·	(,					,		

REAC; on, NJ. (908) 321-4200 EPA Contract 68-C4-0022

CHA JF CUSTODY RECORD

Project Name (SE Nell Desilior Project Number: 03347 - 142 - 631 - 2262 -01 RFW Contact: K. Ruhbins Phone: 4336

No: 08400

SHEET NO.) OF

Sample Identification **Analyses Requested** 0611187 PCBS A Ph. Ca Sampling Location **Date Collected** # of Bottles REAC # Sample No. Matrix Container/Preservative XD 10985. VAB Kuraha Comerto glass for / None x (D 109890ABRUMIS CONSTITUTE 07391AB R. 10 Ce . 00 11 X(I) 01897 AB Warne Como de X O chip1 tos $\mathcal{L}(X)$ 09595 BA Chip & British x (D) 09846BA Chioz tes 07877BA Chuir Button XC2) 095 958A Khi03 10> (C) 62343BA Chip3 Batton 023748AKWID4 top **y (3)** 0234 5BA Chiay BAttoin K Y 1023466AKKiD5+0P **ኦ** (ኔ) <u>کری</u> 0234 7BA KILLO 5 Betton × (3) 0234 FBA KUIDG +22 0234 9BA CLUG BETTOM x (2) <u>r(5)</u> 02330BAGG 7+cp 6/9/97 0235 184 Khip 7 Bitten 10 gloss Jar / None 740 Special Instructions Matrix: Soil

SD -Sediment DS -**Drum Solids**

PW -GW -

Potable Water

Groundwater Surface Water Water

Drum Liquids. SW -Sludge Oil

Other - Vec UVA SL -

(3) Chip Dust

PCB analysis for Dust Samples

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF CUSTODY#

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
all / dualy 3/3	1 ankolis	6/9:/97	YEXMME	Galer	10:00	ALCANACYSIS	Y. EKUME	4(118)	V-Marken	6/11/17	11:00
18			y, Emp	RIVIST	100	XAT PL.CO	Y. FRUKE	6/11/87	1 ol leman	41193	11:00
	,		F		-:						
									(A.,		
				`							
ORM #4						***					

Superfund Update

Cornell-Dubilier Site (Hamilton Industrial Park)

South Plainfield, New Jersey

EPA Region 2

August 1997

UPDATE

Investigations conducted by the U. S. Environmental Protection Agency (EPA) have identified contaminants including Polychlorinated Biphenyls (PCBs) and heavy metals at the Cornell-Dubilier Site and in the Bound Brook adjacent to the site. EPA has initiated a study to determine the impacts of contamination in the Bound Brook on human health and the environment.

Water, sediment and fish samples were collected from the Bound Brook at one location upstream of the site, one location adjacent to the site, three location between the site and New Market Pond, and two locations in New Market Pond.

Fish collected from the Bound Brook as part of this study were found to contain PCBs at levels greater than what is considered safe to eat by the Food and Drug Administration. This information has been provided to the New Jersey Department of Environmental Protection (NJDEP). NJDEP has issued an interim fish consumption advisory for the Bound Brook and New Market Pond. Signs have been posted by EPA advising people not to eat fish from these waters.

The Cornell-Dubilier Site will be proposed for the federal Superfund National Priorities List of hazardous waste sited in September 1997.

BACKGROUND

The Cornell-Dubilier site occupies about 25 acres at 333 Hamilton Boulevard in South Plainfield. It is bordered by Hamilton Boulevard to the northwest, Spicer Avenue to the southwest, a wetlands area to the southeast, the Bound Brook and Conrail tracks to the northeast.

Cornell-Dubilier operated at the Site from 1936 to 1962 manufacturing electronic components, including capacitors. It is alleged that during that during its operation, Cornell-Dubilier disposed of PCB-contaminated materials and other hazardous substances at the site.

The site is currently known as the Hamilton Industrial Park and is occupied by 15 businesses.

CLEANUP ACTIONS

Under the federal Superfund law, EPA can respond, reduce or eliminate the threats to public health by conducting their own cleanup or requiring potentially responsible parties (PRPs) to conduct a cleanup.

EPA has issued an Order to the property owner to conduct the following cleanup actions:

- limit access to areas of known PCB contamination;
- take necessary actions to limit the movement of contaminants to the nearby Bound Brook through surface water run-off; and
- pave driveways and parking areas within the industrial park.

This work has started and is expected to be completed in September.

FUTURE ACTIONS

EPA has expanded the study area for the evaluation of threats to human health to include the portions of the Bound Brook between New Market Pond and the Raritan River.

EPA has collected soil samples from residential properties bordering the site. No immediate action is required based on the results of the limited sampling conducted. Additional sampling will be performed to confirm these results. EPA has provided the results of this sampling to the residents of the properties sampled.

HEALTH INFORMATION

For information about the health effects from exposure to PCBs or other environmental contaminants, contact your local health department or the Agency for Toxic Substances and Disease Registry (ATSDR) at (732) 906-6931.

PUBLIC INVOLVEMENT

EPA encourages public participation during all phases of cleanup activities. If you have questions, or would like additional information about the site, please contact the following EPA personnel:

Pat Seppi Community Involvement Coordinator U.S. EPA, Communications Division 290 Broadway, Floor 26 New York, New York 10007 (212) 637-3679

Eric Wilson On-Scene Coordinator 2890 Woodbridge Avenue Edison, New Jersey 08837 (732) 906-6991

SUPERFUND OMBUDSMAN

EPA, Region 2, has designated an ombudsman as a point-of-contact for community concerns and questions about the federal Superfund program in New Jersey, New York, Puerto Rico and the U.S. Virgin Islands. To support this effort, the agency has established a 24-hour, toll-free number that the public can call to request information, express their concerns or register complaints about Superfund. The ombudsman for EPA's Region 2 office is:

George H. Zachos U.S. EPA, Region 2 2890 Woodbridge Avenue MS-211 (732) 321-6621 Toll-free 888-283-7626

Superfund Update

Cornell-Dubilier Site (Hamilton Industrial Park)

South Plainfield, New Jersey

EPA Region 2

March 1997

The U.S. Environmental Protection Agency (EPA) is issuing this update to inform area residents and workers of the Hamilton Industrial Park of the status of activities at the Cornell-Dubilier Site in South Plainfield, New Jersey. Investigations conducted by EPA have revealed the presence of polychlorinated biphenyls (PCBs) and heavy metals at the Cornell-Dubilier Site (also known as the Hamilton Industrial Park). The Agency for Toxic Substances and Disease Registry (a federal health agency that evaluates risks to public health from environmental contaminants) has reviewed the available data and concluded that PCBs are present in surface soils at the Site at levels of concern for workers at the Hamilton Industrial Park and trespassers. For more information about the health effects from exposure to PCBs and ways you can reduce your exposure to PCBs from the Site, see the accompanying fact sheet titled "Polychlorinated Biphenyls and Cornell-Dubilier: Facts for Workers and Area Residents".

What is the Cornell-Dubilier Site?

The Cornell-Dubilier Site is located at 333 Hamilton Boulevard in South Plainfield, New Jersey. The Site occupies approximately 25 acres and is bounded by Hamilton Boulevard to the northwest, Spicer Avenue to the southwest, a wetlands area to the southeast, and a tributary of the Bound Brook and Conrail tracks to the northeast.

Cornell-Dubilier operated at the Site from 1936 to 1962 manufacturing electronic components including capacitors. During that period of time, Cornell-Dubilier handled and may have disposed of or arranged for the disposal of PCBs at the Site.

The Site is currently known as the Hamilton Industrial Park and is occupied by 15 businesses.

What are the results of EPA's investigation?

Sampling conducted by EPA has revealed the presence of a wide variety of contaminants including PCB's, lead and cadmium in soils at the Site and in the water and sediment of the tributary of the Bound Brook which borders the Site. Additional investigations are required to determine the extent of contamination in soils and in the tributary of the Bound Brook.

PCBs are the primary contaminant of concern at the Site due to the levels found in soils and the potential health effects from long-term exposure.

Air samples were collected by EPA on the perimeter of a fenced area that was used by a truck driving school. This area contains the highest levels of contaminants found at the Site. The day the samples were taken was dry and significant amounts of dust

were generated due to the activity of the truck driving school. No contaminants were found at levels of concern in the air samples collected. The truck driving school no longer operates at the Site, their temporary operating permit was revoked based on the recommendation of the South Plainfield Health Department.

What actions will be taken to address health concerns at the Site?

Under Superfund, EPA can respond to a release or the threat of a release of hazardous substances by conducting a removal action or requiring responsible parties to conduct a removal action. Removal actions are short term operations to reduce or eliminate the threats to public health or the environment associated with the release of hazardous substances. Responsible parties under Superfund include current and former owners or operators of the facility.

EPA has notified two parties of their potential liability for the Site and is preparing legal documents that would require these parties to take actions to limit workers and area residents exposure to contaminants from the Site. If the potentially responsible parties fail to take action in a timely fashion, EPA can take appropriate response actions.

Who do I contact for more information?

For information about the Site contact the South Plainfield Health Department at (908) 226-7634.

For information about the health effects from exposure to PCBs or other environmental contaminants contact the Agency for Toxic Substances Control and Disease Registry (ATSDR) at (908) 906-6931.

For information about EPA's investigation and the response action required to address health concerns at the Site contact Eric Wilson at (908) 906-6991.

For Dow

5t2 5.1.24

Work Order

Site Name: Cornell Dubilier Electronics

Delivery Order #:

Site # GZ

Period Covered: August 8, 1997 thru August 11, 1997

WORK PLANNED/AUTHORIZED

- 1. Meet the OSC at the Edison Office at 8:00am to make and install signs.
- 2. Install signs in areas identified by the OSC.
- 3. Provide the necessary hand tools to accomplish the tasks listed above.

EQUIPMENT AUTHORIZED

Pick

Van

PERSONNEL AUTHORIZED

Forman Laborers 3

EPA On- Scene Coordinator

OHM Site Supervisor